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HIGHER-DIMENSIONAL NONNESTED MULTIGRID METHODS 

L. RIDGWAY SCOTT AND SHANGYOU ZHANG 

ABSTRACT. Nonnested multigrid methods are shown to be optimal-order solvers 
for systems of finite element equations arising from elliptic boundary problems 
in any space dimension. Results are derived for Lagrange-type elements of 
arbitrary degree. 

1. INTRODUCTION 

Large linear systems of elliptic finite element equations can be solved in the 
optimal computational order, i.e., the costs are linear with respect to the num- 
ber of unknowns in the systems, by multigrid methods (cf. [8, 9] and references 
therein). Various versions of multigrid methods have been developed and stud- 
ied, for example, [2, 13, 4, 3, and 15]. In this paper, we will prove optimal 
computational order for nonnested multigrid methods for solving finite ele- 
ment equations arising from higher-dimensional elliptic problems. Our primary 
purpose is to provide a theoretical foundation for the general 3-dimensional 
nonnested multigrid code NMGTM (cf. [1 1]). 

The principle of multigrid methods is to accelerate standard iterative tech- 
niques by doing corrections on coarser grids. The low-frequency iterative errors 
are corrected with less cost by solving a projected residual problem on a coarser 
mesh. To solve the coarse-level residual problem, we repeat the process recur- 
sively, iterating and then making corrections on an even coarser mesh. The 
multigrid method thus uses a sequence of grids which are usually obtained suc- 
cessively by subdivision. In one (resp. two) dimensions, each interval (resp. 
triangle) can be subdivided into 2 (resp. 4) congruent subintervals (resp. sub- 
triangles), generating a family of nested meshes. Unfortunately, refining 3- 
dimensional tetrahedral meshes is much more complicated [16]. For example, 
when refining a regular tetrahedron by linking the midpoints of its edges, there 
are four subtetrahedra which have one edge of length VI times the length of 
the other edges, no matter how we link the midpoints. Further refinements of 
these subtetrahedra could potentially degenerate [16]. If we would like to re- 
fine the meshes nonuniformly to resolve perceived features in the solution, even 
greater difficulties would be encountered due to face and edge couplings between 
tetrahedra. More suitable meshes can potentially be obtained if we are not con- 
strained to have nested meshes [11]. Thus, nonnested multiple grids would 
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be a natural approach to avoid the difficulties caused by the nested-refinement 
constraint. 

Although the projection property [2] of coarse-level corrections does not usu- 
ally exist in nonnested multigrid methods, nonnested coarser meshes can cap- 
ture low-frequency errors and the optimal order of the multigrid method can 
be kept. In this paper, we will show that nonnested multigrid methods have a 
constant rate of convergence and are of optimal order in solving finite element 
equations in any space dimension and for any degree of piecewise polynomial. 
Nonnested multigrid methods were proposed and studied in [15] and [3]. Two- 
dimensional nonnested multigrids were studied in [ 17, 1 8, and 19] for the cases 
where the meshes are quasi-uniform, nondegenerate (but non-quasi-uniform) 
and degenerate, respectively. In [11], it is demonstrated that the complexity of 
implementation of nonnested multigrid methods is essentially the same as for 
the nested case. 

The organization of this paper is as follows. In ?2, we give some neces- 
sary definitions and assumptions. In ?3, some preliminary results are presented 
which concern interpolation operators, coarse-level projection operators and 
coarse-level correction operators. In ?4, we apply the theory of [3] together with 
the results of ?3 to prove constant-rate convergence of the W-cycle and the vari- 
able V-cycle nonnested multigrid methods (with sufficiently many smoothings). 
The theory of [3] is also used to show that more complex iterative schemes, 
such as conjugate gradients, can be used to improve convergence properties of 
nonnested multilevel methods. In addition, we observe that these convergence 
estimates can yield optimal-order work estimates. 

2. DEFINITIONS AND ASSUMPTIONS 

In this section, we will define the multilevel finite element problems and the 
nonnested multigrid schemes, and give our assumptions on elliptic regularity 
and on quasi-uniformity of the meshes. For simplicity, we consider a model 
problem, 

(2.1) -V * (aVu) f in n, 
u=O ono9Q, 

where Q is a bounded, Lipschitz, polyhedral domain in Rd, a E W1 (Q), 
a > Co > 0 a.e. on K2 and f E L2(Q). We use Wm P(Q) and Ha(Q) = 
Wa, 2((Q) to denote usual Sobolev spaces (cf. [6, 7]). We assume that the vari- 
ational solution of (2.1) is in HI+a(Q?) for some a > 0 and that 

(2.2) IIUIIHI+a ? CIfIIH-l+a 
for some C > 0 independent of f (cf. [6]). 

Finite element discretizations for (2.1) read as follows. Find Uk E Vk such 
that 

(2.3) a(uk, v) = F(v) Vv E Vk, k = I, 2, .... 
ef def where a(u, v) d fu aV u * Vv dx, F(v) = f2 fvdx, and 

def vd ~Ocj~) 
Vk = {V E C( ?)IVIK E t VK E Sk, v1 = O} c Ho(Q). 

Here, 9d denotes the space consisting of polynomials of degree / or less in d 
variables and {Sk, k = 1, 2, ... } is a family of quasi-uniform triangulations 
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on L2 in the usual sense: Q = UKeuY K and there are constants CQU > 0 and 
CND < 00 such that 

(2.4) CQUhk < hK < CNDPK VK e Sk, k = 1, 2,..., 

where hK is the diameter of K, hk is the maximum of all hK for K E k 
and PK is the diameter of the maximal ball inscribed in K. In this paper, K 
is understood to be a closed, d-dimensional simplex. Without loss of gener- 
ality, we assume I > a. By (2.4), all Lagrange finite elements on each level, 
{(K, PK, SK), K E Sk}, are affine-equivalent to a single reference finite ele- 
ment (K, 3dd, XK) (cf. [5] for notation). We do not assume k-j1 C St, the 
nestedness of meshes. The fact that refinement of the multiple meshes occurs 
is implied by the following three assumptions: 

(Al) The numbers of simplices in the 4k's grow geometrically with a factor, 
A, greater than 2. 

(A2) Each simplex of Sk intersects at most Co simplices of k? 1 for some 
CO independent of k. 

(A3) Clhk < hk-l < C2hk for some C1 > 0 and C2 < o0 independent of 
k. 

In standard, nested multigrid refinements, the factor in the first condition 
would be 2d. As a consequence of the quasi-uniformity condition (2.4), the 
three conditions (Al)-(A3) are interrelated; we have stated them separately for 
the purposes of clarity. 

The bilinear form a(., -) defines an inner product and a norm III2 df 

a(u, u) in Ho (Q). The III - IIl-norm is equivalent to the HI-norm. For com- 
putational reasons (cf. Bank and Dupont [2]), it is necessary to introduce an 
additional inner product that is equivalent to the L2 inner product. For exam- 
ple, let 

bk(V, WU) := E Vn Wn (O)n, On) 
n 

where Vn denotes the value of v at the node n, (.,*) is the usual L2 inner 
product on Q and {q$On} is the usual Lagrange basis for Vk. 

Let Ak: Vk ` Vk be the symmetric positive definite operator defined by 
a(u, v) = bk(Aku, v) Vu, v E Vk. We define a family of mesh-dependent 
norms: 

IIIU1112,kbk(k,)VU EVk, 0s2 k l2 [lllls~k= k(Aku, u) VUE ,O <s5< 2, k =i1 2, .... 

We note that IIIUIIIo, k = IIUIIL2 and IllullI I, k = III for all u E Vk . Also note that 
(2.3) may be written in the form 

(2.3') AkUk = fk, k = 1, 2, , 

where fk E Vk is determined by bk(fk, v) = F(v) for all v E Vk. 
We now define a symmetric, nonnested multigrid scheme (cf. [2]). The full 

multigrid method has two iterative processes. The overall process involves solv- 
ing problems (2.3) sequentially for k = 1, 2, . .. to get ak Uk . To solve (2.3) 
on the kth level, we interpolate ik1I as an initial guess and then apply one or 
more times the second, recursive process given in the following definition. 
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Definition 2.1 (The kth level symmetric nonnested multigrid scheme). 
(1) For k = 1, (2.3) or (2.6) below is solved exactly. 
(2) For k > 1, W2mk+I will be generated from the initial guess, wo, as 

follows: 
(2a) mk presmoothings are performed to generate WMk. 

(2.5) bk~l - XV) = Ak 1(F(v) -a(w1_1, V)) Vv E Vk , 

I = 1 , 2 , . .. , Mk , 

where p(Ak)/)Lk < C for some fixed c satisfying 0 < o < 2 (p(Ak) is the 
spectral radius of Ak) and F(.) is either the F(.) in (2.3) or the F(.) in (2.6) 
below. 

(2b) WMk is corrected by Ikq to generate WMk+l: Let V solve the coarse- 
level residual problem, 

def 
(2.6) a(j, v) = F(Ikv) - a(wmk, IkV) =- F(v) Vv E Vk-l- 

Let q E Vkl be the approximation of q obtained by applying p iterations 
of the (k - 1)st level scheme to (2.6) starting with initial guess zero. Then 
WMk+l = WMk + Ikq. Here, Ik: Vk-l - Vk is the usual Lagrange interpolation 
operator. 

(2c) mk postsmoothings of the form (2.5) are performed to generate W2Mk+1 

from Wmik+1- 

We let Sk denote the mapping given by (2.5), i.e., w1 = SkW,1- . Thus 
wm = Smwo and W2m+l = Smwm+l . It is obvious that Sk satisfies condition 
(A.4) of [3]. If the meshes are nested, 4-l1 c S , then the Ik above is just the 
identity operator and the scheme is a standard multigrid method. 

3. PRELIMINARY RESULTS 

In this section, we will present some lemmas concerning the stability and 
approximability of the operators Ik and two other operators Pk and Qk de- 
fined below. We first extend the interpolation operator Ik: Vkl -* Vk to a 
local-averaging operator, denoted also by Ik, as follows. For each Lagrange 
node n of Sk, the corresponding nodal value is defined by averaging over a 
(d - 1)-dimensional set Kn fulfilling the conditions of the following lemma. 

Lemma 3.0. Let the assumptions (2.4) and (A1)-(A3) hold. Then for each La- 
grange node n of k, there is a set Kn, which is either a (d - 1)-dimensional 
simplex or the intersection of two d-dimensional simplices, fulfilling the following 
conditions: 

n E Kn , 
Kn c aQ if n E aQ, 
Kn c KnK' for some K' e9-1 and someK E4, 

PK > Chk for some C > 0. 
Proof of Lemma 3.0. First assume that n ? aQ. Let 

U = U K. 
nEKE54 
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Since n is a Lagrange node of S , there is a ball, Bn, of radius Chk centered 
at n contained in un. If n E K' E k-I, then Bn n K' must itself contain a 
ball, B', of radius C'hk . Since B' = UnEKE7 K n B' and there can be at most 
a fixed number of simplices satisfying n E K E k, the one such that K n B' 
has the largest volume yields an appropriate set, Kn = K n K'. 

If n E aQ, define 
Un= U KfnlO. 

nEKE,7k 

Now there is a ball, Bn, of radius Chk centered at n such that Bn n O92 C anr. 
Again, if n E K' E Sk_, then B, n K' n O9 nf K must contain an appropriate 
simplex, Kn, for some n E K E Sk. cl 

The averaging is done using a suitable [10] polynomial, yIn, on Kn. In 
particular, VIn E Y is chosen such that 

J V'n(Y)u(y) dy = v(n) Vv E Y7. 

Let u be a function in WJ1 (n) for some 1 > l/p; IkU E Vk is defined by 

IkU =Z n (y) u(y) dy On, 
n <A 

where {10} denotes the usual Lagrange basis for Vk. Then, Ik preserves the 
homogeneous Dirichlet boundary condition and is identical to the Lagrange 
interpolation operator when restricted to Vkl U Vk . We refer to [10] for more 
details regarding this averaging operator. It is shown in [10] that Ik has the 
simultaneous approximation property: 

(3.1) I1U-IkUIL2+hkIIU-IkUIIHl < Ch'IjuI|HH,+f Vu E H1'+(Q) , < ? < 1, 

where, and in the sequel, C denotes a generic constant independent of k. We 
note that the way of selecting averaging simplices is not exactly the same as that 
used in [10], but the results and the analysis there remain the same here. 

We define two linear operators, 

(3.2) Pk-1 H1(Q) 3Vk_1, a(Pk-lu, v) = a(u, v) VV E Vk1, 

Qk-1: H'(Q) - Vk, a(Qk-lU, v) = a(u, Ikv) Vv E Vk-1. 

Pk-l is an a(., +)-projection operator. Qk-1 is introduced for studying the 
coarse-level correction (2.6). 

As a consequence of the quasi-uniformity condition (2.4), the following in- 
verse inequality holds (cf. Theorem 3.2.6 in [5]): 

(3.3) 11ju|l1 < Chj1 lIuo10, k 

where the constant depends on the polynomial degree 1. By (3.1) and (3.3), we 
can show as in [2] that 

(3.4) 11U11Hfi ? lI1UIflk ? CIIUIIHfl VU e Vk, 0 < f < 1. 

We note that the proof in [2] makes use of the fact that the Sobolev spaces 
can be viewed as real interpolation spaces, H- = [L2, H1]p,2 (cf. [1]). This 
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fact may be deduced by generalizing Corollary 7.46 of [1] to Lipschitz domains 
using the Stein extension theorem [12] and an extension theorem with respect 
to the Sobolev norm used in [6]. The latter may be found in [14, Theorem 5.6]. 

By (3.1) and the definition of III * III, we have 

(3.5) IIIIkv III < CilvIII V Vv E H (Q) 
for some Ci < o0. Therefore, 

(3.6) IIIQk-lvIII < CIIvII V Vv E H 
since IIIQk-IvIII2 - a(v, Ik(Qk-lV)) < IIIVIIIIIIIk(Qk-lV)III < CIIIIvIIIIIIQk-IvIII It 

also follows by interpolating (3.1) that 

(3.7) I|v - IkVIIHf < Chh-II|IvIII Vv E Vkl, 0 < / < 1. 
The following results use standard duality techniques. We give complete 

details since they are simplified by using the interpolant Ik. We assume 0 < 
a< 1. 

Lemma 3.1. Let the assumptions in ?2 hold; then 

Iv - Pk lv III < ChaIIIV III+k Vv e Vk. 

We remark that this result does not follow simply by interpolation, since we 
do not necessarily know the result for any integer a > 1 . 

Proof of Lemma 3.1. For any v E Vk, we apply the Schwarz inequality to get 

(3.8) IIIv-Pk-1v 1112 = a(v, V-Pk-Iv) = a(v, V -PkPk-lv) 

? IIIVIIII+a,kIIIV - PkPk-IvIIIl -,k- 

We next use a duality argument. For any u e Ha- (Q), let u e H(Q) solve 

(3.9) a(u, 0) = (u, 0) Vq E Ho (Q); 

then, by (2.2), u E HI+a (Q) and IIUIIH1+1 <? CIIaIIHa-1. Letting 0 = v - 

PkPklv in (3.9), we get, by (3.1), 

IIIv-PkPk-lIVIII1ak <C SUp (ii 5V-PkPk-lV) 
1 II IHa-1 

= C sup a(u, V - PkPklV) 

= Csupa(u, V-Pk-V) +a(u, Pk-lV-PkPk-iv) 

= Csupa(u-Ik-Iu, v-PklV) + a(u-IkU, Pk-lV-PkPk-lV) 

< Csup(IIIu - Ik-UIIIIIIV -Pk-lVIII + IIIU - IkUIIIIIIPk-lV - PkPk-IVIII) 

(3.10) < C sup IIUIIH|+a(ha IR -II Pk-lVIII + haIIIPk-lvv-PkPklVIII) 
u K CupIuII1+ahekI~ -PklvIII P~kIVII 

< C sup IIUIIHI1a(h (ak- I IIV - Pk- IV III 

+ hk(II|V-Pk-V III + I|V - PkPk-lv II)) 

= C sup IIuIIH1+a(hak- IIIIV -Pk-lV III 

+ h(II|v- Pk-lVIII + IIIPk(v - Pk-lV)III)) 

< Cha SUp II|UIIHa- II |v- Pk-v III = ChaIIIv - Pk-lv III 
u 
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Combining (3.8) and (3.10) proves the lemma. 51 

Lemma 3.2. Let the assumptions in ?2 hold; then 

BIIPk-1V - Qk-1VI|| < Ch|IIIvIII1+,,k VV E Vk- 

Proof. We first show 10 - PkqljHl-a < Ch a III0q1 Vq E Vkl. Replacing the 0 
in (3.9) by 0 - Pkq, we get 

10 -PkbIIH1-a = SUp (U, 0q-Pkq) = sup a(u, 0-Pkq) 
IIUIIH1-1=1 U 

( 3. 1 ) < sup IIIU - IkUIIII Ikb - Pkq|| < Ch" SUP IIUIIHI+a j|| +Pk0I/- 
u, u 

< ChMjjq$ - PkgIj/ < Ch01jjjq jj. 

For any v E Vk, (3.2) implies that 

IIIPk-1V - Qk-IVIII = sup a(PklIV - Qk-lV, q5) 
OE Vk- I , 1110111=1 

= sup a(v, 0-Ik 0) =sup a(v, PkO -Ik 0) 

< sup IIIV IIIl +a, k IIIPk0 Ik0| - 1-a, k 

< Csup IIIVIII1+a,k(I0- Pkq$IHI-- + 110 - IkO|jH1-a) 

< C sup h |IIIvIII|+,,kIII$0III < Ch |IIIvIII||1+,k 

where (3.4), (3.11) and (3.7) are used. C 

4. CONVERGENCE THEORY 

In this section, we apply the theory of [3] to establish the constant rate of 
convergence of nonnested multigrid methods and show that their work estimates 
can be optimal order. The key assumption (A.3) in [3] is of the form 

(4.1) Ia((I - IkQkl)V, V)I ? Ch I2I k III V k1/ Vv e Vk. 

This estimate can be established for the nonnested multigrid method of Defini- 
tion 2.1 as follows. From (3.2), 

a((I - IkQk-l)V , v) = a(v , v) - a((IkQk-l)V , v) 
= a(v, v) - a(Qk-lV, Qk-lV) 

= a(v -Qk-lV, V + Qk-1V)- 

From (3.6), we thus have 

Ia((I - IkQk-l)V, V)I < i|V- Qk-IVIIIIIIV + Qk-IVIII 

< (1 + CI)IIIV - Qk-lIVIIIIIIVII. 

Combining Lemmas 3.1 and 3.2, we have 

III| - Qk-1VIII < Ch|IIIvIII|+(,k. 
Expanding using eigenfunctions [2] and applying Holder's inequality shows that 

IllvIIII1| . k < Illv 11.,I ll_0IIvIa V15Z Vv E Vk . 
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Therefore we have shown that 

Ia((I - IkQk-1)V, V)I < ChaIIIvIIIallIIVIIIak. 

Thus we have proved (4.1) with fi = a/2. The following is a consequence of 
Theorem 7 in [3]. 

Theorem 4.1 (W-cycle scheme). Suppose that (2.2), (2.4) and (AI-3) hold. Let 
p > 2 in Definition 2.1. For any 0 < y < 1, there is an integer m independent 
of the level number k, such that 

(4.2) IIIUk - W2m+ 1 III < Y IIIuk - WoIII 

where uk and wi are defined in (2.3) and Definition 2.1, respectively. 

We usually do not have a constant rate of convergence for the V-cycle scheme 
unless more stringent conditions hold. As suggested by Bramble et al. in [3], 
one can vary the number of smoothings, Mk, at different levels, k, to improve 
stability. The resulting "variable V-cycle" nonnested multigrid scheme has the 
attractive feature that its computational cost is comparable to the standard V- 
cycle scheme. Suppose that there are constants I < KO < K1 < 5 (see (Al)) 
such that 

(4.3) KOmk < mk-4 < Klmk- 

The following is a consequence of Theorem 6 in [3]. 

Theorem 4.2 (variable V-cycle scheme). Suppose that (2.2), (2.4), (AI-3) and 
(4.3) hold. Let p = 1 in Definition 2.1. For any 0 < y < 1, (4.2) holds provided 
that the number of smoothing on the finest mesh, Mk, is sufficiently large. 

Standard convergence proofs and optimal-order work estimates [2] (e.g., as in 
Theorem 4.4 to follow) simply use the fact that the multigrid solution operator 
can yield an operator, &k, whose contraction number may be made sufficiently 
small independent of k. This can be achieved either by taking mk sufficiently 
large or by iterating the kth level iteration some number, r, of times. (In the 
latter case, the contraction number is bounded by yr.) The proof of Theorem 
7 in [3] shows that y < Cm-a/2 for the W-cycle. Thus, it would appear to 
be more efficient to pick r > 1. For example, r = 2 with m smoothing steps 
involves essentially the same work as r - I with 2m smoothing steps. The 
former strategy would give an error reduction proportional to ma whereas the 
latter would reduce by (2m)-a/2. (However, the resulting work estimates are 
of optimal order for all r > 1 .) 

Although optimal-order work estimates cannot be improved in terms of 
asymptotic order, there is clearly the possibility of using something more so- 
phisticated than simple iteration to accelerate convergence, as observed in [3] 
and elsewhere. For example, one could use the conjugate gradient iteration [3]. 
Moreover, such iterative methods can yield optimal-order solvers under less 
stringent conditions. The following is also a consequence of Theorem 6 in [3]. 

Theorem 4.3 (variable V-cycle/conjugate gradient scheme). Suppose that (2.2), 
(2.4), (AI)-(A3) and (4.3) hold. Let p = 1 in Definition 2.1. Let the operator 
induced by the kth level iteration given by Definition 2.1 be denoted by Ok, 
that is (see (2.3')), kfk := W2mk?+, where wo = 0. Then r steps of the 
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preconditioned conjugate gradient method for solving Akuk = fk, using ok 

as a preconditioner, has a contraction rate y(r) < 1 that tends to zero as r 
increases, independently of k for any Mk > 1. 

Nonnested multigrid methods must be implemented appropriately in order to 
obtain optimal-order work estimates. In the nested case, it is clear how one can 
compute the interpolants used in (2.6) and elsewhere in an optimal amount of 
work. Thus, we make the following assumption regarding the implementation 
of the method in the general case. 

(A4) There is a constant C independent of the level, k, such that the inter- 
polant IkV can be computed for any v E Vk-l in an amount of work bounded 
by CdimVk. 

In [1 1], we show how this can be done in a simple way with some restrictions 
on the relationship between successive meshes. 

With regard to convergence, note that 

(4.4) II1U - ukIII < Cuhk 

for some a < 0 < 1 (recall that a is the degree of elliptic regularity in (2.2) and 
I is the degree of the piecewise polynomial approximation defined subsequent to 
(2.3)). In particular, if u E H'+0, then (4.4) holds with CU = CIIUIIH+HO. This 
gives us a quantitative goal for the accuracy of an iterative solution method. 

Theorems 4.1-4.3 above give bounds for operators, ok, that take an initial 
guess in Vk of the solution of (2.3) and then decrease the error by an amount, 
y, that can be made arbitrarily small by increasing either (or both) of the pa- 
rameters m and r. By the estimates in [2], it follows by induction that the 
nonnested multigrid schemes are optimal-order solvers for the finite element 
equations (2.3). 

Theorem 4.4 (optimal computational order for full multigrid). Suppose that the 
various assumptions of Theorems 4.1, 4.2 or 4.3, respectively, hold and that r 
and m are chosen so that the operators, 6k, decrease the error by an amount 
y < l/(1 + 2C0), where C2 is the constant in assumption (A3) and 0 appears 
in (4.4). For the W-cycle, suppose that 2 < p < 7 (cf (Al)). Let fio = 0 and 
define iik E Vk for k > 1 by applying 6k with initial guess IkUk-1 and F as 
given in (2.3). If assumption (A4) holds, then the total amount of computational 
work and storage required to determine fik is bounded by C dim Vk . Moreover, 
if (4.4) holds, then 

IllUk - kIII< Cuhk? 

The proof of this theorem is similar to one in [2]. We have 

6k =IUk - k ukII< Y II? IIU-k -k- IIII 

< y(II|uk - u Il + IIIU -k- uIII + IIIUk-1 - lIk-II) 

? y(Cuhk + Cuhk-1 + Ek-1) 

< y(Cu(l + C2 )hk + 4k-1) < Cuhfk 

by induction, because y < 1/(1 + 2C20). The error estimate then follows from 
the triangle inequality. The work estimates are identical to those in [2]. 

For the conjugate gradient/variable V-cycle scheme, it is always sufficient 
to pick mk = 1. This is a considerable simplification in that the number of 



466 L. R. SCOTT AND SHANGYOU ZHANG 

unspecified parameters is reduced. Since p = 1 in this case as well, the only 
parameter to be chosen is the number, r, of conjugate gradient iterations. 
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